大学物理 ›› 2020, Vol. 39 ›› Issue (9): 6-8.doi: 10.16854 /j.cnki.1000-0712.190536

• 教学研究 • 上一篇    下一篇

非相对论极限下Pauli-Fierz 哈密顿量形式浅析

张俊,朱占武,贺泽东   

  1. 湖北汽车工业学院理学院,湖北十堰442002
  • 收稿日期:2019-11-22 修回日期:2020-04-21 出版日期:2020-09-20 发布日期:2020-09-24
  • 作者简介:张俊( 1984—) ,女,湖北十堰人,湖北汽车工业学院理学院讲师,博士,主要从事大学物理、量子力学、量子光学等方面的教学和计算材料学等方面的研究工作.
  • 基金资助:
    湖北汽车工业学院校质量工程项目( JY2019040) 、湖北省教育厅项目( Q20161803) 资助

A brief analysis of different form of Pauli-Fierz Hamiltonian in non-relativistic limit

ZHANG Jun,ZHU Zhan-wu,HE Ze-dong   

  1. School of Science,Hubei University of Automotive Technology,Shiyan,Hubei 442002,China
  • Received:2019-11-22 Revised:2020-04-21 Online:2020-09-20 Published:2020-09-24

摘要: 长度规范下的哈密顿量在讨论量子化电磁场( 光子) 与原子( 或分子) 相互作用时有着明显优势,即没有物理上不可观测量矢势A,而是电场与偶极矩的乘积.但是不同的文章中出现的长度规范哈密顿量似乎不一样.在本文中,我们从速度规范下的Pauli-Fierz 哈密顿量出发,分别得到坐标和动量表象下的长度规范哈密顿量,从而证明它们的等价性.澄清学生在初次学习时的疑惑.

关键词: Pauli-Fierz 哈密顿量, 规范变换, 光子, 坐标和动量表象

Abstract: When we discuss the interaction of atoms or molecules with quantized electromagnetic waves ( photons) ,the Hamiltonian in length gauge takes the advantage by replacing the vector potential A by electric filed multiplying the dipole. However,formulas in different papers seem to have different forms. In this paper,we start from Pauli-Fierz Hamiltonian in velocity gauge and obtain the length gauge Hamiltonian in coordinate and momentum  representation,respectively,which proves the equivalence between different forms. We hope this could help students to understand the Hamiltonian in different forms.

Key words: Pauli-Fierz Hamiltonian, gauge transformation, photon, coordinate and momentum representation